A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries
نویسندگان
چکیده
Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. The location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh, which leads to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum domain and one mesh with triangles discretizes the region outside the vacuum domain. The two meshes overlap in a narrow region around the vacuum domain. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details exterior to the vacuum. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like projection. Key-words: axisymmetric plasma equilibria in tokamaks; domain decomposition mortar method; overlapping meshes; linear and cubic Résumé : En éléments finis, les applications existantes pour le calcul d’équilibres de plasma à frontière libre en axisymétrique approchent le flux poloidale par une fonction continue à gradient discontinu, qui est localement dans chaque élément du maillage un polynôme de degré un. La position des points critiques du flux poloidale, qui est de grande importance pour les ingénieurs des tokamaks, est par consequence limitée aux seuls nœuds du maillage, et donc à l’origine de perturbations quand on modelise le passage du plasma du transitoire vers l’équilibre. De plus, des résultats numériques recents sur le couplage à l’équilibre entre le plasma et un modèle de diffusion/transport ont montré le besoin de plus de regularité dans l’approximation du flux. Dans ce travail on propose une approche par méthode d’éléments finis avec joints sur deux maillages qui se recouvrent. Un maillage structuré composé de rectangles qui couvre la chambre à vide du tokamak et un maillage non structuré de triangles pour la partie du domaine qui se trouve à l’exterieur de la chambre à vide. Les deux maillages sont superposés sur une bande etroite qui entoure la chambre à vide. Cet approche est assez flexible pour permettre d’avoir facilement et à bas coût numérique une approximation du flux poloidale plus regulière dans la chambre à vide tout en gardant une description precise des détails géometriques dans la partie externe. La continuité de la solution numérique dans la partie de recouvrement des maillages est imposée faiblement à l’aide de projections de type mortar. Mots-clés : plasma à l’equilibre dans des tokamaks en axisymétrique; méthode de décomposition de domaine avec éléments joints (mortar); recouvrement de maillages; éléments finis linéaires et cubiques Mortar element method for free-boundary axisymmetric plasma equilibria 3
منابع مشابه
Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملModified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials
In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملMulti-Region Approach to Free-Boundary 3D Tokamak Equilibria and Resistive Wall Instabilities
Free-boundary 3D tokamak equilibria and resistive wall instabilities are calculated using a new resistive wall model in the two-fluid M3D-C1 code. In this model, the resistive wall and surrounding vacuum region are included within the computational domain. This implementation contrasts with the method typically used in fluid codes in which the resistive wall is treated as a boundary condition o...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 334 شماره
صفحات -
تاریخ انتشار 2017